Method to determine cutoff frequencies for acoustic waves propagating in nonisothermal media.

نویسندگان

  • Z E Musielak
  • D E Musielak
  • H Mobashi
چکیده

A method to determine cutoff frequencies for linear acoustic waves propagating in nonisothermal media is introduced. The developed method is based on wave variable transformations that lead to Klein-Gordon equations, and the oscillation theorem is applied to obtain the turning point frequencies. Physical arguments are used to justify the choice of the largest turning point frequency as the cutoff frequency. The method is used to derive the cutoff frequencies in nonisothermal media modeled by exponential and power law temperature gradients, for which the cutoffs cannot be obtained based on known analytical solutions. An interesting result is that the acoustic cutoff frequencies calculated by the method are local quantities that vary in the media, and that their specific values at a given height determine the frequency that acoustic waves must have in order to be propagating at this height. To extend this physical interpretation of the acoustic cutoff frequency to nonisothermal media of arbitrary temperature gradients, a generalized version of the method applicable to these media is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of the Frictional Surface Damage Using Acoustic Emission Method

In this study, the change at rubbing surfaces has been investigated experimentally using an acoustic emission signal monitoring system. A steel ring is slipped on the surface of  a metallic sheet to simulate frictional conditions. The mechanical disturbances caused by the movement of the ring produce stress waves propagating along the sheet surface. The out of plane displacement of the sheet su...

متن کامل

Solution of propagation of acoustic-gravity waves in the atmosphere using finite difference method of order two

Investigating waves propagation’s equation in the atmosphere is one of the important and widely used issues in various sciences, which has attracted many researchers. A type of propagating waves is an acoustic-gravity wave. These type of waves have a lot of stationarity properties and can be propagate to a high altitude in the atmosphere. The equation of acoustic-gravity wave propagation is a h...

متن کامل

طول میرایی امواج مغناطوآکوستیک آرام مشاهده شده در حلقه‌های تاج با استفاده ازتلسکوپ اس- دی- او

Slow magneto-acoustic waves are often observed in polar plumes and active region fan loops. The observed periodicities of these waves are in the range of 1- 40 minutes. Mainly, the ratio of damping time to the oscillation period is less than 2 (equal to the ratio damping length to the wave length), which corresponds to the strong damping regime. In general, slow magneto-acoustic waves can be da...

متن کامل

Determination of sediments diameter using acoustic waves

The use of acoustic waves in researches related to sea water is of most importance among scientists recently. Since these waves are the only waves, transmitted in water with lowest attenuation and high speed, they can be used in many scientific fields. The main goal of this research is to better understand the physics and mechanisms of sound-seabed interaction, including acoustic penetration, p...

متن کامل

Non -propagating Waves and Behavior of Curtainwall-pile Breakwaters

Abstract Usually, evanescent modes or non-propagating waves are produced when a propagating incident wave impinges on an interface between two media or materials such as curtainwall-pile breakwater (CPB) at a subcritical angle and decay with distance from interface. To achieve an effective prediction of hydrodynamic performance of CPB and overcome the problem of underestimation of energy loss, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006